skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peng, Qihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deep-reaching warming along the boundary of the Antarctic Circumpolar Current and the subtropical gyre is a consistent feature of multidecadal observational estimates and projections of future climate. In the Indian basin, the maximum ocean heat content change is collocated with the powerful Agulhas Return Current (ARC) in the west and Subantarctic Front (SAF) in the east, forming a southeastward band we denote as the ARC–SAF. We find that this jet-confined warming is linked to a poleward shift of these strong currents via the thermal wind relation. Using a suite of idealized ocean-only and partially coupled climate model experiments, we show that strong global buoyancy flux anomalies consistently drive a poleward shift of the ARC–SAF circulation and the associated heat content change maximum. To better understand how buoyancy addition modifies this circulation in the absence of wind stress change, we next apply buoyancy perturbations only to certain regions. Buoyancy addition across the Indian and Pacific Oceans (including the ARC–SAF) gives rise to a strong baroclinic circulation response and modest poleward shift. In contrast, buoyancy addition in the North Atlantic drives a vertically coherent poleward shift of the ARC–SAF, which we suggest is associated with an ocean heat content perturbation communicated to the Southern Ocean via planetary waves and advected eastward along the ARC–SAF. Whereas poleward-shifting circulation and banded warming under climate change have been previously attributed to poleward-shifting winds in the Southern Ocean, we show that buoyancy addition can drive this circulation change in the Indian sector independent of changing wind stress. Significance StatementThis research aims to identify which changes at the atmosphere–ocean interface cause ocean warming localized within strong Southern Ocean currents under climate change. Whereas previous regional studies have emphasized the role of changes in Southern Hemisphere winds, we show that these currents are also sensitive to additional heat and freshwater input into the ocean—even in the faraway North Atlantic. Adding heat and freshwater shifts the currents southward, which is dynamically tied to the “band” of ocean warming seen in both long-term observations and climate change projections. We demonstrate that the warming climate will modify ocean circulation in unexpected ways; the consequences for the ocean’s ability to continue removing anthropogenic heat and carbon from the atmosphere remain poorly understood. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. In the boreal spring of 2023, an extreme coastal El Niño struck the coastal regions of Peru and Ecuador, causing devastating rainfalls, flooding, and record dengue outbreaks. Observations and ocean model experiments reveal that northerly alongshore winds and westerly wind anomalies in the eastern equatorial Pacific, initially associated with a record-strong Madden-Julian Oscillation and cyclonic disturbance off Peru in March, drove the coastal warming through suppressed coastal upwelling and downwelling Kelvin waves. Atmospheric model simulations indicate that the coastal warming in turn favors the observed wind anomalies over the far eastern tropical Pacific by triggering atmospheric deep convection. This implies a positive feedback between the coastal warming and the winds, which further amplifies the coastal warming. In May, the seasonal background cooling precludes deep convection and the coastal Bjerknes feedback, leading to the weakening of the coastal El Niño. This coastal El Niño is rare but predictable at 1 month lead, which is useful to protect lives and properties. 
    more » « less
  4. Anthropogenic surface warming dominates and drives a global acceleration of the upper ocean currents in a warmer climate. 
    more » « less
  5. Abstract The influence of eastern tropical Pacific (EPAC; 10°S–10°N, 140°–80°W) wind anomalies on El Niño is investigated using observations and model experiments. Extreme and moderate El Niños exhibit contrasting anomalous wind patterns in the EPAC during the peak and decay phases: westerly wind anomalies during extreme El Niño and southeasterly (southwesterly) wind anomalies south (north) of the equator during moderate El Niño. Experiments with an ocean general circulation model indicate that for extreme El Niño, the eastward intrusion of westerly wind anomalies contributes to the prolonged positive sea surface temperature (SST) anomalies in the eastern equatorial Pacific throughout boreal spring by weakened upwelling and horizontal advection. For moderate El Niño, by contrast, both the meridional and zonal anomalous winds over the EPAC are important in the rapid (slow) SST cooling south (north) of the equator through advection and wind–evaporation–SST feedback. Atmospheric model experiments confirm that these EPAC anomalous winds are primarily forced by tropical SST anomalies. The interplay between wind and SST anomalies suggests positive air–sea feedbacks over EPAC during the decay phase of El Niño. Ocean model results show that the frequency of extreme El Niño increases when EPAC wind anomalies are removed, suggesting the importance of EPAC winds for El Niño diversity. 
    more » « less